Gradient_descent Mechanism

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import numpy.linalg as linalg

def loss_function(A, b, x):
"""Evaluates the loss (1 / 2) * |Ax - b|^2."""
residual = np.dot(A, x) - b
return 0.5 * np.dot(residual, residual)

def gradient(A, b, x):
"""Evaluates the gradient of (1 / 2) * |Ax - b|^2."""
residual = np.dot(A, x) - b
return np.dot(A.T, residual)

def gradient_descent(A, b, x_0, num_iterations):
"""Runs gradient descent to minimize the loss (1 / 2) * |Ax - b|^2."""
x = x_0
for _ in range(num_iterations):
grad = gradient(A, b, x)
grad_norm_sq = np.dot(grad, grad)
if grad_norm_sq == 0:
break
step_size = loss_function(A, b, x) / grad_norm_sq
x = x - step_size * grad
gradnorm = linalg.norm(gradient(A, b, x))
return x, gradnorm

# 示例测试
if __name__ == "__main__":
A = np.array([[1, -1], [0, 1]])
b = np.array([0, 0])
x_0 = np.array([1, 1])
num_iterations = 100
solution, gradnorm = gradient_descent(A, b, x_0, num_iterations)
print("Solution:", solution)
print("Gradient norm:", gradnorm)